

### Abnormalities of lung growth and lung ageing

- Low maximally attained lung function
  - Lung function at birth
  - Lung function growth
- Rapid decline
- Low maximally attained lung function AND rapid decline
- Risk factors may operate across the lifecourse ...and even across generations





due to poor lung growth in childhood,

even though normal decline in adult life



# Ageing Lungs in European Cohorts (ALEC)

- identify determinants of lung function
- collate new data on pre-conception and transgenerational determinants
- identify change in DNA methylation patterns occurring as adults age and their association with disease development and environmental exposures
- generate a predictive risk score for low lung function and COPD that accounts for combined effects of factors across the lifecourse
- implement an online interactive tool for personalised risk prediction
- identify knowledge gaps

H2020 ref 633.212

Cost total: 7.271.433 €

Contribució de la UE: 5.534.094 €

Durada: maig 2015 - maig 2019





# **ALEC cohorts**





Figure 3 Maps showing geographical distribution of studies within ALEC





# **ALEC Workstreams**





## **Transgenerational determinants**



Environmental exposure



ORIGINAL ARTICLE

Grandmother's smoking when pregnant with the mother and asthma in the grandchild: the Norwegian Mother and Child Cohort Study

Maria C Magnus, <sup>1</sup> Siri E Håberg, <sup>2</sup> Øystein Karlstad, <sup>3</sup> Per Nafstad, <sup>1,4</sup> Stephanie J London, <sup>5</sup> Wenche Nystad <sup>1</sup>

...grandmother's smoking when pregnant with the mother increased the risk of asthma in the grandchild independent of the mother's smoking status...unmeasured confounding may be present...



Image from www.urmc.rochester.edu

But what about **FATHERS?** 







Original article

# A three-generation study on the association of tobacco smoking with asthma

Simone Accordini, <sup>1\*</sup> Lucia Calciano, <sup>1</sup> Ane Johannessen, <sup>2</sup> Laura Portas, <sup>1</sup> Bryndis Benediktsdóttir, <sup>3</sup> Randi Jacobsen Bertelsen, <sup>4,5</sup> Lennart Bråbäck, <sup>6</sup> Anne-Elie Carsin, <sup>7,8,9</sup> Shyamali C Dharmage, <sup>10</sup> Julia Dratva, <sup>11,12</sup> Bertil Forsberg, <sup>6</sup> Francisco Gomez Real, <sup>4</sup> Joachim Heinrich, <sup>13</sup> John W Holloway, <sup>14</sup> Mathias Holm, <sup>15</sup> Christer Janson, <sup>16</sup> Rain Jögi, <sup>17</sup> Bénédicte Leynaert, <sup>18</sup> Andrei Malinovschi, <sup>19</sup> Alessandro Marcon, <sup>1</sup> Jesús Martínez-Moratalla Rovira, <sup>20,21</sup> Chantal Raherison, <sup>22</sup> José Luis Sánchez-Ramos, <sup>23</sup> Vivi Schlünssen, <sup>24,25</sup> Roberto Bono, <sup>26</sup> Angelo G Corsico, <sup>27</sup> Pascal Demoly, <sup>28,29</sup> Sandra Dorado Arenas, <sup>30</sup> Dennis Nowak, <sup>13,31</sup> Isabelle Pin, <sup>32,33,34</sup> Joost Weyler, <sup>35</sup> Deborah Jarvis <sup>36,37†</sup> and Cecilie Svanes, <sup>25†</sup>; on behalf of the Ageing Lungs in European Cohorts (ALEC) Study

#### Associations of tobacco smoking with asthma across three generations – paternal line

Father's

low education level\*

Father's age

Father's ever asthma

Father's smoking initiation

Father's smoking initiation ≥15 years

EATHER

(generation F1)

Father

Offspring's gender

Offspring's ever asthma

with nasal allergies

without nasal allergies

Offspring's age

OFFSPRING

(generation F2)

Centre

Grandparents'

low education level\*

Grandfather's

ever asthma

Grandmother's

ever asthma

Grandmother's smoking when the father

was in utero

Grandmother's smoking during other periods<sup>†</sup>

GRANDPARENTS

(generation FO)

| Generation |                                                          | Father's ever asthma OR (95% CI) | Offspring's ever<br>asthma with<br>nasal allergies<br>RRR (95% CI) | Offspring's ever<br>asthma without<br>nasal allergies<br>RRR (95% CI) |  |  |
|------------|----------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| F0         | Grandmother's ever asthma (present vs absent)            | 3.08 (1.96–4.85)                 | _                                                                  | _                                                                     |  |  |
|            | Grandfather's ever asthma (present vs absent)            | 2.38 (1.51–3.75)                 | _                                                                  | _                                                                     |  |  |
|            | Grandparents' education level <sup>a</sup> (low vs high) | 0.96 (0.71–1.30)                 | _                                                                  | _                                                                     |  |  |
|            | Grandmother's smoking (vs not smoking)                   | ,                                |                                                                    |                                                                       |  |  |
|            | when the father was <i>in utero</i>                      | 0.82 (0.47-1.44)                 | 1.60 (0.95-2.68)                                                   | 1.08 (0.55-2.13)                                                      |  |  |
|            | during other periods (or unknown smoking period)         | 1.02 (0.62–1.67)                 | 1.24 (0.81-1.91)                                                   | 1.35 (0.87-2.09)                                                      |  |  |
| F1         | Father's age (1-year increase)                           | 0.99 (0.96-1.02)                 | _                                                                  | _                                                                     |  |  |
|            | Father's ever asthma (present vs absent)                 | _                                | 2.37 (1.63-3.43)                                                   | 1.70 (1.14-2.53)                                                      |  |  |
|            | Father's education level <sup>a</sup> (low vs high)      | _                                | 0.47 (0.27-0.83)                                                   | 0.87 (0.49–1.53)                                                      |  |  |
|            | Father's smoking initiation (vs not smoking)             |                                  |                                                                    |                                                                       |  |  |
|            | <15 years of age                                         | _                                | 1.19 (0.74-1.90)                                                   | 1.43 (1.01–2.01)                                                      |  |  |
|            | $\geq$ 15 years of age                                   | _                                | 0.98 (0.71-1.36)                                                   | 0.88 (0.70-1.11)                                                      |  |  |
| F2         | Offspring's gender (female vs male)                      | _                                | 0.71 (0.59-0.84)                                                   | 0.83 (0.70-0.98)                                                      |  |  |
|            | Offspring's age (1-year increase)                        | _                                | 1.00 (0.98-1.02)                                                   | 0.96 (0.94-0.99)                                                      |  |  |
|            |                                                          |                                  |                                                                    |                                                                       |  |  |



# **Childhood determinants**

- Trajectories
- Hormones
  - •MR using genes as a natural experiment
- Physical activity
- Body mass and composition
- Greenness







#### Childhood predictors of lung function trajectories and future $\Re M$ COPD risk: a prospective cohort study from the first to the sixth decade of life

Dinh S Bui, Caroline J Lodge, John A Burgess, Adrian J Lowe, Jennifer Perret, Minh Q Bui, Gayan Bowatte, Lyle Gurrin, David P Johns, Bruce R Thompson, Garun S Hamilton, Peter A Frith, Alan L James, Paul S Thomas, Deborah Jarvis, Cecilie Svanes, Melissa Russell, Stephen C Morrison, Iain Feather, Katrina J Allen, Richard Wood-Baker, John Hopper, Graham G Giles, Michael J Abramson, Eugene H Walters, Melanie C Matheson\*, Shyamali C Dharmage\*

#### Summary

Background Lifetime lung function is related to quality of life and longevity. Over the lifespan, individuals follow Lancet Respir Med 2018

#### Lung function trajectories age 7 to mid-50's





#### Puberty and lung function at peak (Mahmoud 2018, Am J Respir Crit Care Med)







#### Physical activity, body composition and lung function growth







Roda submitted; Peralta submitted

# **Adult determinants**

- Early life factors
- Asthma and asthma treatment
- Sleep
- Physical activity
- Obesity
- Diet
- Occupation
- Hormones
- UV exposure
- Greenness





ORIGINAL ARTICLE

# Occupational exposures and 20-year incidence of COPD: the European Community Respiratory Health Survey

Theodore Lytras, <sup>1,2</sup> Manolis Kogevinas, <sup>1,2,3,4</sup> Hans Kromhout, <sup>5</sup> Anne-Elie Carsin, <sup>1,2</sup> Josep M Antó, <sup>1,2,3,4</sup> Hayat Bentouhami, <sup>6</sup> Joost Weyler, <sup>6,7</sup> Joachim Heinrich, <sup>8</sup> Dennis Nowak, <sup>8</sup> Isabel Urrutia, <sup>9</sup> Jesús Martinez-Moratalla, <sup>10,11</sup> José Antonio Gullón, <sup>12</sup> Antonio Pereira-Vega, <sup>13</sup> Chantal Raherison-Semjen, <sup>14</sup> Isabelle Pin, <sup>15,16,17</sup> Pascal Demoly, <sup>18,19</sup> Bénédicte Leynaert, <sup>20</sup> Simona Villani, <sup>21</sup> Thorarinn Gislason, <sup>22,23</sup> Cecilie Svanes, <sup>24,25</sup> Mathias Holm, <sup>26</sup> Bertil Forsberg, <sup>27</sup> Dan Norbäck, <sup>28</sup> Amar J Mehta, <sup>29</sup> Nicole Probst-Hensch, <sup>30,31</sup> Geza Benke, <sup>32</sup> Rain Jogi, <sup>33</sup> Ijell Torén, <sup>34</sup> Torben Sigsgaard, <sup>35</sup> Vivi Schlünssen, <sup>35,36</sup> Mario Olivieri, <sup>37</sup> Paul D Blanc, <sup>38</sup> Roel Vermeulen, <sup>5</sup> Judith Garcia-Aymerich, <sup>1,2,3,4</sup> Deborah Jarvis, <sup>29,40</sup> Jan-Paul Zock <sup>1,2,3</sup>

#### **COPD** incidence and occupational exposures

| Ever exposed to           | Relative risk (LLN)–<br>ECRHS) | Population attributable fraction |
|---------------------------|--------------------------------|----------------------------------|
| Biological dusts          | 1.6 (1.1 to 2.3)               | 16.0                             |
| Mineral dusts             | 1.1 (0.7 to 1.7)               | 3.9                              |
| Gases and fumes           | 1.5 (1.0 to 2.2)               | 19.4                             |
| Vapours gas dusts & fumes | 1.3 (0.9 to 2.0)               | 14.1                             |
| Herbicides                | 2.0 (0.7 to 4.1)               | 2.6                              |
| Insecticides              | 2.3 (1.1 to 4.2)               | 4.7                              |
| Fungicides                | 1.9 (0.9 to 3.6)               | 3.9                              |
| All pesticides            | 2.2 (1.1 to 3.8)               | 5.6                              |

21%









ORIGINAL ARTIC

# Leisure-time vigorous physical activity is associated with better lung function: the prospective ECRHS study

Elaine Fuertes, <sup>1,2,3</sup> Anne-Elie Carsin, <sup>1,2,3</sup> Josep M Antó, <sup>1,2,3</sup> Roberto Bono, <sup>4</sup> Angelo Guido Corsico, <sup>5,6</sup> Pascal Demoly, <sup>1,8</sup> Thorarinn Gislason, <sup>9</sup> José-Antonio Gullón, <sup>10</sup> Christer Janson, <sup>11</sup> Deborah Jarvís, <sup>2,13</sup> Joachim Heinrich, <sup>4,15</sup> Mathias Holm, <sup>45</sup> Benédicte Leynaert, <sup>11,18</sup> Alessandro Marcon, <sup>19</sup> Jesús Martínez-Moratalla, <sup>20,21</sup> Dennis Nowak, <sup>2,22,4</sup> Sjivila Pascual Erquicia, <sup>4</sup> Micole M Probst-Hensch, <sup>25,56</sup> Chantal Raherison, <sup>21</sup> Wasif Raza, <sup>28</sup> Francisco Gómez Real <sup>23,50</sup> Messa Russell, <sup>31</sup> José Luis Sánchez-Ramos, <sup>22</sup> Joost Weyler, <sup>33</sup> Judith García Aymerich, <sup>12,5</sup>

#### Physical activity on lung function levels



# Higher physical activity levels associated with higher lung function

Adjusted for sex, age, age<sup>2</sup>, height, weight, smoking status, secondhand smoke exposure, education and occupation





- Effects driven by current smokers
- Stratification by sex, asthma, chronic disease, BMI did not alter conclusions
- No consistent effects for lung function decline







# Dietary antioxidants and 10-year lung function decline in adults from the ECRHS survey

Vanessa Garcia-Larsen<sup>1</sup>, James F. Potts<sup>2</sup>, Ernst Omenaas<sup>3</sup>, Joachim Heinrich<sup>4</sup>, Cecilie Svanes<sup>5</sup>, Judith Garcia-Aymerich<sup>4</sup>, Peter G. Burney<sup>2,7</sup> and Deborah L. Jarvis<sup>2,7</sup>

#### Dietary intake and lung function decline

| Dietary intake<br>(per-tertile | Average decline in lung function mL·year <sup>-1</sup> (continuous) regression coefficient (95% CI) |         |                       |         |                      |         |                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------|---------|-----------------------|---------|----------------------|---------|-------------------------|
| increase)                      | Never-smoker                                                                                        | p-value | Quit before ECRHS III | p-value | Smoker               | p-value | p-value for interaction |
| Subjects n                     | 270                                                                                                 |         | 255                   |         | 109                  |         |                         |
|                                |                                                                                                     |         | FEV <sub>1</sub>      |         |                      |         |                         |
| Total fruit g                  | 0.51 (-3.62, 4.65)                                                                                  | 0.81    | 6.41 (2.29, 10.5)     | 0.002   | 3.83 (-2.93, 10.60)  | 0.26    | 0.03                    |
| Apple g                        | 0.16 (-3.51, 3.82)                                                                                  | 0.93    | 4.79 (0.87, 8.72)     | 0.017   | 0.62 (-6.22, 7.46)   | 0.86    | 0.09                    |
| Banana g                       | 2.63 (-1.11, 6.37)                                                                                  | 0.17    | 2.92 (-1.52, 7.35)    | 0.20    | -0.82 (-7.70, 6.06)  | 0.81    | 0.25                    |
| Tomato g                       | 0.52 (-3.36, 4.40)                                                                                  | 0.79    | 5.15 (0.87, 9.44)     | 0.019   | 5.71 (-1.21, 12.63)  | 0.11    | 0.06                    |
| Herbal tea mL                  | -3.89 (-11.5, 3.71)                                                                                 | 0.32    | 12.8 (5.13, 20.54)    | 0.001   | 1.97 (-13.36, 17.3)  | 0.80    | 0.21                    |
| Vitamin C mg                   | 1.66 (-3.36, 6.69)                                                                                  | 0.52    | 3.99 (-1.45, 9.44)    | 0.15    | 3.19 (-5.59, 11.97)  | 0.47    | 0.05                    |
|                                |                                                                                                     |         | FVC                   |         |                      |         |                         |
| Total fruit g                  | 0.13 (-4.79, 5.06)                                                                                  | 0.96    | 8.13 (2.22, 14.01)    | 0.007   | 4.15 (-5.41, 13.7)   | 0.39    | 0.04                    |
| Apple g                        | 1.45 (-2.91, 5.80)                                                                                  | 0.51    | 6.75 (1.14, 12.34)    | 0.018   | 0.78 (-9.13, 10.69)  | 0.88    | 0.29                    |
| Banana g                       | 4.07 (-0.54, 8.67)                                                                                  | 0.08    | 6.23 (0.01, 12.5)     | 0.05    | -3.79 (-13.6, 5.99)  | 0.44    | 0.04                    |
| Tomato g                       | 1.02 (-3.66, 5.70)                                                                                  | 0.67    | 9.09 (3.04, 15.14)    | 0.003   | 7.16 (-3.05, 17.37)  | 0.17    | 0.11                    |
| Herbal tea mL                  | -2.52 (-11.7, 6.67)                                                                                 | 0.59    | 14.4 (3.16, 25.69)    | 0.01    | 12.34 (-9.47, 34.15) | 0.26    | 0.11                    |
| Vitamin C mg                   | 3.17 (-2.83, 9.16)                                                                                  | 0.30    | 4.65 (-3.08, 12.37)   | 0.24    | 10.58 (-1.96, 23.11) | 0.10    | 0.30                    |

Bold font indicates a statistically significant p-value (<0.05). FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; ECRHS: European Community Respiratory Health Survey. #: Adjusted for height, age, country, sex, socio-economic status, body mass index, total energy intake, years of education and physical activity.



# **Epigenetics**

- DNAm and lung function
- DNAm -focus in SERPINA1
- Biological clock
- Two step MR analyses looking at BMI and LF





# Summary

• Novel data, novel results

• More to come...

